Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.820
Filtrar
1.
Cancer Med ; 13(7): e7129, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38618967

RESUMO

BACKGROUND: The RNA-binding motif single-stranded interacting protein 3 (RBMS3) is a constituent of the RNA-binding motif (RBM) protein family, which assumes a pivotal role in governing cellular biogenesis processes such as the cell cycle and apoptosis. Despite an abundance of studies elucidating RBMS3's divergent roles in the genesis and advancement of various tumors, its involvement in colon cancer remains enigmatic. METHODS: The present investigation employed data analysis from TCGA and GTEx to unveil that RBMS3 expression demonstrated a diminished presence in colon cancer tissues when juxtaposed with normal colon tissues. The effect of RBMS3 and LIM zinc finger domain 1 (LIMS1) on colon cancer was substantiated via animal models and cellular experiments. The connection between RBMS3 and LIM zinc finger domain 1 (LIMS1) was verified by molecular biology methods. RESULTS: The study conclusively ascertained that augmenting RBMS3 expression quells the proliferation, migration, and invasion of colon cancer cells. Furthermore, the inquiry unveiled a plausible mechanism through which RBMS3 impacts the expression of LIMS1 by modulating its mRNA stability. The investigation ascertained that RBMS3 inhibits the progression of colon cancer by regulating LIMS1. The inhibitory function of LIMS1 and RBMS3 is closely intertwined in colon cancer, with knocking down LIMS1 being able to rescue the inhibitory effect of RBMS3 overexpression on the functionality of colon cancer cell CONCLUSIONS: The discernments delineate RBMS3 as a novel suppressor of cancer via LIMS1, thereby bestowing fresh therapeutic possibilities and illuminating the intricacies of colon cancer.


Assuntos
Neoplasias do Colo , Animais , Apoptose , Ciclo Celular/genética , Neoplasias do Colo/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Humanos
2.
Sci Rep ; 14(1): 6731, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509306

RESUMO

RNA-binding proteins (RBPs) contribute to the pathogenesis of proliferative diabetic retinopathy (PDR) by regulating gene expression through alternative splicing events (ASEs). However, the RBPs differentially expressed in PDR and the underlying mechanisms remain unclear. Thus, this study aimed to identify the differentially expressed genes in the neovascular membranes (NVM) and retinas of patients with PDR. The public transcriptome dataset GSE102485 was downloaded from the Gene Expression Omnibus database, and samples of PDR and normal retinas were analyzed. A mouse model of oxygen-induced retinopathy was used to confirm the results. The top 20 RBPs were screened for co-expression with alternative splicing genes (ASGs). A total of 403 RBPs were abnormally expressed in the NVM and retina samples. Functional analysis demonstrated that the ASGs were enriched in cell cycle pathways. Cell cycle-associated ASEs and an RBP-AS regulatory network, including 15 RBPs and their regulated ASGs, were extracted. Splicing factor proline/glutamine rich (SFPQ), microtubule-associated protein 1 B (MAP1B), heat-shock protein 90-alpha (HSP90AA1), microtubule-actin crosslinking factor 1 (MACF1), and CyclinH (CCNH) expression remarkably differed in the mouse model. This study provides novel insights into the RBP-AS interaction network in PDR and for developing screening and treatment options to prevent diabetic retinopathy-related blindness.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Camundongos , Animais , Humanos , Retinopatia Diabética/patologia , Processamento Alternativo , Retina/patologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ciclo Celular/genética
3.
Int J Mol Sci ; 25(6)2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38542157

RESUMO

We present novel workflows for Q-FISH nanoscopy with the potential for prognostic applications and resolving novel chromatin compaction changes. DNA-fluorescence in situ hybridization (DNA-FISH) is a routine application to visualize telomeres, repetitive terminal DNA sequences, in cells and tissues. Telomere attrition is associated with inherited and acquired diseases, including cancer and cardiomyopathies, and is frequently analyzed by quantitative (Q)-FISH microscopy. Recently, nanoscopic imaging techniques have resolved individual telomere dimensions and their compaction as a prognostic marker, in part leading to conflicting conclusions still unresolved to date. Here, we developed a comprehensive Q-FISH nanoscopy workflow to assess telomeres with PNA telomere probes and 3D-Stimulated Emission Depletion (STED) microscopy combined with Dynamic Intensity Minimum (DyMIN) scanning. We achieved single-telomere resolution at high, unprecedented telomere coverage. Importantly, our approach revealed a decrease in telomere signal density during mitotic cell division compared to interphase. Innovatively expanding FISH-STED applications, we conducted double FISH targeting of both telomere- and chromosome-specific sub-telomeric regions and accomplished FISH-STED in human cardiac biopsies. In summary, this work further advanced Q-FISH nanoscopy, detected a new aspect of telomere compaction related to the cell cycle, and laid the groundwork for future applications in complex cell types such as post-mitotic neurons and muscle cells.


Assuntos
DNA , Telômero , Humanos , Hibridização in Situ Fluorescente/métodos , Telômero/genética , Ciclo Celular/genética , Divisão Celular
4.
PLoS Genet ; 20(3): e1010503, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38498520

RESUMO

Coordination of growth and division in eukaryotic cells is essential for populations of proliferating cells to maintain size homeostasis, but the underlying mechanisms that govern cell size have only been investigated in a few taxa. The green alga Chlamydomonas reinhardtii (Chlamydomonas) proliferates using a multiple fission cell cycle that involves a long G1 phase followed by a rapid series of successive S and M phases (S/M) that produces 2n daughter cells. Two control points show cell-size dependence: the Commitment control point in mid-G1 phase requires the attainment of a minimum size to enable at least one mitotic division during S/M, and the S/M control point where mother cell size governs cell division number (n), ensuring that daughter distributions are uniform. tny1 mutants pass Commitment at a smaller size than wild type and undergo extra divisions during S/M phase to produce small daughters, indicating that TNY1 functions to inhibit size-dependent cell cycle progression. TNY1 encodes a cytosolic hnRNP A-related RNA binding protein and is produced once per cell cycle during S/M phase where it is apportioned to daughter cells, and then remains at constant absolute abundance as cells grow, a property known as subscaling. Altering the dosage of TNY1 in heterozygous diploids or through mis-expression increased Commitment cell size and daughter cell size, indicating that TNY1 is a limiting factor for both size control points. Epistasis placed TNY1 function upstream of the retinoblastoma tumor suppressor complex (RBC) and one of its regulators, Cyclin-Dependent Kinase G1 (CDKG1). Moreover, CDKG1 protein and mRNA were found to over-accumulate in tny1 cells suggesting that CDKG1 may be a direct target of repression by TNY1. Our data expand the potential roles of subscaling proteins outside the nucleus and imply a control mechanism that ties TNY1 accumulation to pre-division mother cell size.


Assuntos
Chlamydomonas , Chlamydomonas/metabolismo , Ciclo Celular/genética , Divisão Celular , Quinases Ciclina-Dependentes/genética , Proteínas de Ligação a RNA/genética , Tamanho Celular
5.
J Cancer Res Clin Oncol ; 150(3): 144, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507057

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is a hematological malignancy derived from the accumulation of abnormal proliferation of infantile leukocytes in the hematopoietic system. DNA-damage-inducible transcript 4 (DDIT4) acting as a negative regulator of rapamycin inhibitor is involved in various cellular functions. Many studies have suggested that DDIT4 plays a key role in tumorigenesis. However, the role of DDIT4 in AML has been poorly studied. METHOD: In this study, we analyzed the expression of DDIT4 in AML patients using The Cancer Genome Atlas and real-time polymerase chain reaction. The Chi-square test was used to assess the correlation between DDIT4 and clinical characters in AML patients. Loss-of-function experiments were implemented to investigate the role of DDIT4 in AML carcinogenesis. The R package was applied to evaluate the correlation between DDIT4 expression and immune cells. RESULTS: Results showed that the expression of DDIT4 was associated with Age, Cytogenetic risk, Cytogenetics and OS event. Moreover, high expression of DDIT4 led to a terrible prognosis. KEGG analysis showed that differently expressed genes (DEGs) were involved in the PI3-Akt signaling pathway. GSEA enrichment analysis displayed DEGs were correlated with apoptosis. Functional experiments presented that knocking down DDIT4 suppressed cell cycle transition/proliferation and facilitated apoptosis. In addition, DDIT4 is associated with immune infiltration. CONCLUSION: Our research verified that DDIT4 can be used as a prognostic marker and a potential therapeutic target for AML.


Assuntos
Leucemia Mieloide Aguda , Humanos , Prognóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Transdução de Sinais , Ciclo Celular/genética , Carcinogênese , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Development ; 151(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488018

RESUMO

During asymmetric cell division, cell polarity is coordinated with the cell cycle to allow proper inheritance of cell fate determinants and the generation of cellular diversity. In the Caenorhabditis elegans zygote, polarity is governed by evolutionarily conserved Partitioning-defective (PAR) proteins that segregate to opposing cortical domains to specify asymmetric cell fates. Timely establishment of PAR domains requires a cell cycle kinase, Aurora A (AIR-1 in C. elegans). Aurora A depletion by RNAi causes a spectrum of phenotypes including reversed polarity, excess posterior domains and no posterior domain. How depletion of a single kinase can cause seemingly opposite phenotypes remains obscure. Using an auxin-inducible degradation system and drug treatments, we found that AIR-1 regulates polarity differently at different times of the cell cycle. During meiosis I, AIR-1 acts to prevent later formation of bipolar domains, whereas in meiosis II, AIR-1 is necessary to recruit PAR-2 onto the membrane. Together, these data clarify the origin of multiple polarization phenotypes in RNAi experiments and reveal multiple roles of AIR-1 in coordinating PAR protein localization with cell cycle progression.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Zigoto/metabolismo , Ciclo Celular/genética , Polaridade Celular/genética , Embrião não Mamífero/metabolismo
7.
Curr Opin Genet Dev ; 85: 102161, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447236

RESUMO

Sustaining cell identity and function across cell division is germane to human development, healthspan, and cancer avoidance. This relies significantly on propagation of chromatin organization between cell generations, as chromatin presents a barrier to cell fate and cell state conversions. Inheritance of chromatin states across the many cell divisions required for development and tissue homeostasis represents a major challenge, especially because chromatin is disrupted to allow passage of the DNA replication fork to synthesize the two daughter strands. This process also leads to a twofold dilution of epigenetic information in histones, which needs to be accurately restored for faithful propagation of chromatin states across cell divisions. Recent research has identified distinct multilayered mechanisms acting to propagate epigenetic information to daughter strands. Here, we summarize key principles of how epigenetic information in parental histones is transferred across DNA replication and how new histones robustly acquire the same information postreplication, representing a core component of epigenetic cell memory.


Assuntos
Epigenoma , Histonas , Humanos , Histonas/genética , Histonas/metabolismo , Epigênese Genética/genética , Cromatina/genética , Ciclo Celular/genética , Divisão Celular , Replicação do DNA/genética
8.
Cell Death Dis ; 15(3): 206, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467619

RESUMO

Antisense RNAs (asRNAs) represent an underappreciated yet crucial layer of gene expression regulation. Generally thought to modulate their sense genes in cis through sequence complementarity or their act of transcription, asRNAs can also regulate different molecular targets in trans, in the nucleus or in the cytoplasm. Here, we performed an in-depth molecular characterization of NFYC Antisense 1 (NFYC-AS1), the asRNA transcribed head-to-head to NFYC subunit of the proliferation-associated NF-Y transcription factor. Our results show that NFYC-AS1 is a prevalently nuclear asRNA peaking early in the cell cycle. Comparative genomics suggests a narrow phylogenetic distribution, with a probable origin in the common ancestor of mammalian lineages. NFYC-AS1 is overexpressed pancancer, preferentially in association with RB1 mutations. Knockdown of NFYC-AS1 by antisense oligonucleotides impairs cell growth in lung squamous cell carcinoma and small cell lung cancer cells, a phenotype recapitulated by CRISPR/Cas9-deletion of its transcription start site. Surprisingly, expression of the sense gene is affected only when endogenous transcription of NFYC-AS1 is manipulated. This suggests that regulation of cell proliferation is at least in part independent of the in cis transcription-mediated effect on NFYC and is possibly exerted by RNA-dependent in trans effects converging on the regulation of G2/M cell cycle phase genes. Accordingly, NFYC-AS1-depleted cells are stuck in mitosis, indicating defects in mitotic progression. Overall, NFYC-AS1 emerged as a cell cycle-regulating asRNA with dual action, holding therapeutic potential in different cancer types, including the very aggressive RB1-mutated tumors.


Assuntos
Neoplasias Pulmonares , RNA Longo não Codificante , Animais , Humanos , Filogenia , Regulação Neoplásica da Expressão Gênica , RNA Antissenso/genética , Ciclo Celular/genética , Proliferação de Células/genética , Neoplasias Pulmonares/genética , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Movimento Celular , Mamíferos/genética , Fator de Ligação a CCAAT/genética
9.
Genome Biol ; 25(1): 62, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438920

RESUMO

Cancer cells often exhibit DNA copy number aberrations and can vary widely in their ploidy. Correct estimation of the ploidy of single-cell genomes is paramount for downstream analysis. Based only on single-cell DNA sequencing information, scAbsolute achieves accurate and unbiased measurement of single-cell ploidy and replication status, including whole-genome duplications. We demonstrate scAbsolute's capabilities using experimental cell multiplets, a FUCCI cell cycle expression system, and a benchmark against state-of-the-art methods. scAbsolute provides a robust foundation for single-cell DNA sequencing analysis across different technologies and has the potential to enable improvements in a number of downstream analyses.


Assuntos
Benchmarking , Ploidias , Ciclo Celular/genética , Divisão Celular , Análise de Sequência de DNA
10.
Genes Genomics ; 46(4): 437-449, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438666

RESUMO

BACKGROUND: Bladder cancer is a prevalent malignancy. CDC20, a pivotal cell cycle regulator gene, plays a significant role in tumour cell proliferation, but its role in bladder cancer remains unclear. OBJECTIVE: This study aimed to analyse CDC20 expression in bladder cancer and explore its roles in tumour progression, treatment response, patient prognosis, and cellular proliferation mechanisms. METHODS: We systematically analysed CDC20 expression in bladder cancer using bioinformatics. Our study investigated the impact of CDC20 on chemotherapy and radiotherapy sensitivity, patient prognosis, and changes in CDC20 methylation levels. We also explored the role and potential underlying mechanisms of CDC20 in bladder cancer cell growth. We used lentiviral transfection to downregulate CDC20 expression in 5637 and T24 cells, followed by CCK-8, colony formation, scratch, invasion, apoptosis, and cell cycle analyses. RESULTS: CDC20 is highly expressed in bladder cancer and is significantly correlated with poor prognosis. Moreover, CDC20 demonstrated high diagnostic potential for bladder cancer (AUC > 0.9). The tumour methylation levels of CDC20 in tumour tissues markedly decreased compared with those in normal tissues, and lower methylation levels were associated with a worse prognosis. Elevated CDC20 expression is linked to increased mutation burden. Our findings suggested a potential association between high CDC20 expression and resistance to chemotherapy and radiotherapy, as CDC20 expression may impact immune cell infiltration levels. Mechanistic analysis revealed the influence of CDC20 on bladder cancer cell proliferation through cell cycle-related pathways. According to the cell experiments, CDC20 downregulation significantly impedes bladder cancer cell proliferation and invasion, leading to G1 phase arrest. CONCLUSION: Aberrantly high CDC20 expression promotes tumour progression in bladder cancer, resulting in a poor prognosis, and may also constitute a promising therapeutic target.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Linhagem Celular Tumoral , Neoplasias da Bexiga Urinária/metabolismo , Proliferação de Células/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Biologia Computacional , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo
11.
Nat Commun ; 15(1): 2765, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553455

RESUMO

Single-cell technologies can measure the expression of thousands of molecular features in individual cells undergoing dynamic biological processes. While examining cells along a computationally-ordered pseudotime trajectory can reveal how changes in gene or protein expression impact cell fate, identifying such dynamic features is challenging due to the inherent noise in single-cell data. Here, we present DELVE, an unsupervised feature selection method for identifying a representative subset of molecular features which robustly recapitulate cellular trajectories. In contrast to previous work, DELVE uses a bottom-up approach to mitigate the effects of confounding sources of variation, and instead models cell states from dynamic gene or protein modules based on core regulatory complexes. Using simulations, single-cell RNA sequencing, and iterative immunofluorescence imaging data in the context of cell cycle and cellular differentiation, we demonstrate how DELVE selects features that better define cell-types and cell-type transitions. DELVE is available as an open-source python package: https://github.com/jranek/delve .


Assuntos
Perfilação da Expressão Gênica , Software , Perfilação da Expressão Gênica/métodos , Análise de Célula Única/métodos , Diferenciação Celular , Ciclo Celular/genética , Análise de Sequência de RNA/métodos
12.
Curr Opin Plant Biol ; 78: 102527, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484440

RESUMO

Cell size affects many processes, including exchange of nutrients and external signals, cell division and tissue mechanics. Across eukaryotes, cells have evolved mechanisms that assess their own size to inform processes such as cell cycle progression or gene expression. Here, we review recent progress in understanding plant cell size regulation and its implications, relating these findings to work in other eukaryotes. Highlights include use of DNA contents as reference point to control the cell cycle in shoot meristems, a size-dependent cell fate decision during stomatal development and insights into the interconnection between ploidy, cell size and cell wall mechanics.


Assuntos
Células Vegetais , Plantas , Ciclo Celular/genética , Divisão Celular , Diferenciação Celular/genética , Plantas/genética , Ploidias , Tamanho Celular , Regulação da Expressão Gênica de Plantas/genética
13.
Biomed Pharmacother ; 173: 116336, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38412717

RESUMO

OBJECTIVE: Protein disulfide isomerase A3 (PDIA3) promotes the correct folding of newly synthesized glycoproteins in the endoplasmic reticulum. PDIA3 is overexpressed in most tumors, and it may become a biomarker of cancer prognosis and immunotherapy. Our study aims to detect the expression level of PDIA3 in gastric cancer (GC) and its association with GC development as wells as the underlying mechanisms. METHODS: GC cell lines with PDIA3 knockdown by siRNA, CRISPR-cas9 sgRNAs or a pharmacological inhibitor of LOC14 were prepared and used. PDIA3 knockout GC cells were established by CRISPR-cas9-PDIA3 system. The proliferation, migration, invasion and cell cycle of GC cells were analyzed by cell counting kit-8 assay, wound healing assay, transwell assay and flow cytometry, respectively. Immunodeficient nude mice was used to evaluate the role of PDIA3 in tumor formation. Quantitative PCR and western blot were used for examining gene and protein expressions. RNA sequencing was performed to see the altered gene expression. RESULTS: The expressions of PDIA3 in GC tissues and cells were increased significantly, and its expression was negatively correlated with the three-year survival rate of GC patients. Down-regulation of PDIA3 by siRNA, LOC14 or CRISPR-cas9 significantly inhibited proliferation, invasion and migration of GC cells TMK1 and AGS, with cell cycle arrested at G2/M phase. Meanwhile, decreased PDIA3 significantly inhibited growth of tumor xenograft in vivo. It was found that cyclin G1 (encoded by CCNG1 gene) expression was decreased by downregulation of PDIA3 in GC cells both in vitro and in vivo. In addition, protein levels of other cell cycle related factors including cyclin D1, CDK2, and CDK6 were also significantly decreased. Further study showed that STAT3 was associated with PDIA3-mediated cyclin G1 regulation. CONCLUSION: PDIA3 plays an oncogenic role in GC. Our findings unfolded the functional role of PDIA3 in GC development and highlighted a novel target for cancer therapeutic strategy.


Assuntos
Benzotiazóis , Neoplasias Gástricas , Animais , Camundongos , Humanos , Neoplasias Gástricas/patologia , Regulação para Baixo/genética , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo , Camundongos Nus , Ciclina G1/genética , RNA Guia de Sistemas CRISPR-Cas , Proliferação de Células/genética , Linhagem Celular Tumoral , Ciclo Celular/genética , RNA Interferente Pequeno/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética
14.
Aging (Albany NY) ; 16(4): 3363-3385, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38349866

RESUMO

BACKGROUND: Based on bioinformatics research of NUDT21 in pan-cancer, we aimed to clarify the mechanism of NUDT21 in HHNC by experiment. METHODS: The correlation between differential expression of NUDT21 in pan-cancer and survival prognosis, genomic instability, tumor stemness, DNA repair, RNA methylation and with immune microenvironment were analyzed by the application of different pan-cancer analysis web databases. In addition, immunohistochemistry staining and genetic detection of NUDT21 in HHNCC tumor tissues by immunohistochemistry and qRT-PCR. Then, through in vitro cell experiments, NUDT21 was knocked down by lentivirus to detect the proliferation, cycle, apoptosis of FaDu and CNE-2Z cells, and finally by PathScan intracellular signaling array reagent to detect the apoptotic protein content. RESULTS: Based on the pan-cancer analysis, we found that elevated expression of NUDT21 in most cancers was significantly correlated with TMB, MSI, neoantigens and chromosomal ploidy, and in epigenetics, elevated NUDT21 expression was strongly associated with genomic stability, mismatch repair genes, tumor stemness, and RNA methylation. Based on immunosuppressive score, we found that NUDT21 plays an essential role in the immunosuppressive environment by suppressing immune checkpointing effect in most cancers. In addition, using HHNSCC as a study target, PCR and pathological detection of NUDT21 in tumor tissues was significantly increased than that in paracancerous normal tissues. In vitro cellular assays, silencing NUDT21 inhibited proliferation and promoted apoptosis in FaDu and CNE-2Z cells, and blocked the cell cycle in the G2/M phase. Therefore, the experiments confirmed that NUDT21 promotes the proliferation of FaDu by suppressing the expression of apoptotic.


Assuntos
Apoptose , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Divisão Celular , Apoptose/genética , Ciclo Celular/genética , Instabilidade Genômica , Microambiente Tumoral
15.
Nucleic Acids Res ; 52(6): 3069-3087, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38321933

RESUMO

Coordinating epigenomic inheritance and cell cycle progression is essential for organogenesis. UHRF1 connects these functions during development by facilitating maintenance of DNA methylation and cell cycle progression. Here, we provide evidence resolving the paradoxical phenotype of uhrf1 mutant zebrafish embryos which have activation of pro-proliferative genes and increased number of hepatocytes in S-phase, but the liver fails to grow. We uncover decreased Cdkn2a/b and persistent Cdk4/6 activation as the mechanism driving uhrf1 mutant hepatocytes into S-phase. This induces replication stress, DNA damage and Atr activation. Palbociclib treatment of uhrf1 mutants prevented aberrant S-phase entry, reduced DNA damage, and rescued most cellular and developmental phenotypes, but it did not rescue DNA hypomethylation, transposon expression or the interferon response. Inhibiting Atr reduced DNA replication and increased liver size in uhrf1 mutants, suggesting that Atr activation leads to dormant origin firing and prevents hepatocyte proliferation. Cdkn2a/b was downregulated pro-proliferative genes were also induced in a Cdk4/6 dependent fashion in the liver of dnmt1 mutants, suggesting DNA hypomethylation as a mechanism of Cdk4/6 activation during development. This shows that the developmental defects caused by DNA hypomethylation are attributed to persistent Cdk4/6 activation, DNA replication stress, dormant origin firing and cell cycle inhibition.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Metilação de DNA , Fígado , Peixe-Zebra , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/genética , Divisão Celular/genética , Quinase 4 Dependente de Ciclina/genética , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , DNA/metabolismo , Replicação do DNA/genética , Embrião não Mamífero , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Fase S , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Ativação Enzimática/genética
16.
J Cell Biochem ; 125(4): e30539, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38372014

RESUMO

The circadian clock controls the expression of a large proportion of protein-coding genes in mammals and can modulate a wide range of physiological processes. Recent studies have demonstrated that disruption or dysregulation of the circadian clock is involved in the development and progression of several diseases, including cancer. The cell cycle is considered to be the fundamental process related to cancer. Accumulating evidence suggests that the circadian clock can control the expression of a large number of genes related to the cell cycle. This article reviews the mechanism of cell cycle-related genes whose chromatin regulatory elements are rhythmically occupied by core circadian clock transcription factors, while their RNAs are rhythmically expressed. This article further reviews the identified oscillatory cell cycle-related genes in higher organisms such as baboons and humans. The potential functions of these identified genes in regulating cell cycle progression are also discussed. Understanding how the molecular clock controls the expression of cell cycle genes will be beneficial for combating and treating cancer.


Assuntos
Relógios Circadianos , Neoplasias , Animais , Humanos , Ritmo Circadiano/genética , Ciclo Celular/genética , Relógios Circadianos/genética , Divisão Celular , Neoplasias/genética , Mamíferos
17.
Mol Carcinog ; 63(5): 859-873, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353359

RESUMO

Breast cancer has become the most commonly diagnosed cancer. Heterogeneous nuclear ribonucleoprotein C (HNRNPC), a reader of N6-methyladenosine (m6A), has been observed to be upregulated in various types of cancer. Nevertheless, the role of HNRNPC in breast cancer and whether it is regulated by m6A modification deserve further investigation. The expression of HNRNPC in breast cancer was examined by quantitative real-time polymerase chain reaction and western blot analysis. RNA immunoprecipitation was performed to validate the binding relationships between HNRNPC and WD repeat domain 77 (WDR77). The effects of HNRNPC and m6A regulators on WDR77 were investigated by actinomycin D assay. The experiments in vivo were conducted in xenograft models. In this research, we found that HNRNPC was highly expressed in breast cancer, and played a crucial role in cell growth, especially in the luminal subtype. HNRNPC could combine and stabilize WDR77 mRNA. WDR77 successively drove the G1/S phase transition in the cell cycle and promoted cell proliferation. Notably, this regulation axis was closely tied to the m6A modification status of WDR77 mRNA. Overall, a critical regulatory mechanism was identified, as well as promising targets for potential treatment strategies for luminal breast cancer.


Assuntos
Adenina , Neoplasias da Mama , Ribonucleoproteínas Nucleares Heterogêneas Grupo C , Humanos , Feminino , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética , Neoplasias da Mama/genética , RNA Mensageiro/genética , Ciclo Celular/genética , Receptores de Estrogênio
18.
Cell Commun Signal ; 22(1): 131, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365687

RESUMO

BACKGROUND: Malignant tumours seriously threaten human life and health, and effective treatments for cancer are still being explored. The ability of SHC SH2 domain-binding protein 1 (SHCBP1) to induce cell cycle disturbance and inhibit tumour growth has been increasingly studied, but its dynamic role in the tumour cell cycle and corresponding effects leading to mitotic catastrophe and DNA damage have rarely been studied. RESULTS: In this paper, we found that the nucleoprotein SHCBP1 exhibits dynamic spatiotemporal expression during the tumour cell cycle, and SHCBP1 knockdown slowed cell cycle progression by inducing spindle disorder, as reflected by premature mitotic entry and multipolar spindle formation. This dysfunction was caused by G2/M checkpoint impairment mediated by downregulated WEE1 kinase and NEK7 (a member of the mammalian NIMA-related kinase family) expression and upregulated centromere/kinetochore protein Zeste White 10 (ZW10) expression. Moreover, both in vivo and in vitro experiments confirmed the significant inhibitory effects of SHCBP1 knockdown on tumour growth. Based on these findings, SHCBP1 knockdown in combination with low-dose DNA-damaging agents had synergistic tumouricidal effects on tumour cells. In response to this treatment, tumour cells were forced into the mitotic phase with considerable unrepaired DNA lesions, inducing mitotic catastrophe. These synergistic effects were attributed not only to the abrogation of the G2/M checkpoint and disrupted spindle function but also to the impairment of the DNA damage repair system, as demonstrated by mass spectrometry-based proteomic and western blotting analyses. Consistently, patients with low SHCBP1 expression in tumour tissue were more sensitive to radiotherapy. However, SHCBP1 knockdown combined with tubulin-toxic drugs weakened the killing effect of the drugs on tumour cells, which may guide the choice of chemotherapeutic agents in clinical practice. CONCLUSION: In summary, we elucidated the role of the nucleoprotein SHCBP1 in tumour cell cycle progression and described a novel mechanism by which SHCBP1 regulates tumour progression and through which targeting SHCBP1 increases sensitivity to DNA-damaging agent therapy, indicating its potential as a cancer treatment.


Assuntos
Neoplasias , Proteômica , Animais , Humanos , Proliferação de Células/genética , Ciclo Celular/genética , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Mamíferos/metabolismo , Proteínas Adaptadoras da Sinalização Shc/genética , Proteínas Adaptadoras da Sinalização Shc/metabolismo
19.
Saudi Med J ; 45(2): 128-138, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309745

RESUMO

OBJECTIVES: To investigate the role of cell cycle protein-dependent kinase regulatory subunit 1B (CKS1B) in driving the aggressive and rapid proliferation observed in pancreatic cancer. METHODS: A comprehensive analysis was carried out using raw mRNA information and data from 2 databases: the cancer genome atlas and gene expression omnibus. The differential expression of CKS1B at the mRNA and tissue levels in cancer and adjacent paracancerous tissues were assessed. Additionally, the relationship of CKS1B expression and overall survival (OS) rate was investigated using Kaplan-Meier survival curves. Potential molecular mechanisms by which CKS1B may influence the biological characteristics of pancreatic cancer were explored using resources available within the encyclopedia of RNA interactomes database. RESULTS: The CKS1B exhibited significant differential expression at the mRNA as well as protein levels. A correlation with statistical significance between CKS1B expression and N stage, age, and alcohol consumption was observed. Notably, high CKS1B expression was determined as a predictive factor for worse OS. Furthermore, the analysis revealed a potential synergistic role between CKS1B and the molecule PKMYT1, which could impact the ATR-Chk1-Cdc25 signaling pathway and disrupt the G2/M checkpoint within the cell cycle, ultimately promoting abnormal tumor proliferation. CONCLUSION: The CKS1B may serve as a novel potential prognostic factor in pancreatic cancer and is involved in the abnormal proliferation biology phenotype by mediating cell cycle signaling pathways.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Neoplasias Pancreáticas , Humanos , Quinases relacionadas a CDC2 e CDC28/genética , Ciclo Celular/genética , Proliferação de Células/genética , Proteínas de Membrana/genética , Neoplasias Pancreáticas/genética , Fenótipo , Prognóstico , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , RNA Mensageiro/genética , Transdução de Sinais/genética
20.
Semin Cancer Biol ; 99: 45-55, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38346544

RESUMO

Accurate and complete DNA duplication is critical for maintaining genome integrity. Multiple mechanisms regulate when and where DNA replication takes place, to ensure that the entire genome is duplicated once and only once per cell cycle. Although the bulk of the genome is copied during the S phase of the cell cycle, increasing evidence suggests that parts of the genome are replicated in G2 or mitosis, in a last attempt to secure that daughter cells inherit an accurate copy of parental DNA. Remaining unreplicated gaps may be passed down to progeny and replicated in the next G1 or S phase. These findings challenge the long-established view that genome duplication occurs strictly during the S phase, bridging DNA replication to DNA repair and providing novel therapeutic strategies for cancer treatment.


Assuntos
Replicação do DNA , Mitose , Humanos , Fase S/genética , Ciclo Celular/genética , Replicação do DNA/genética , Mitose/genética , DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...